

INFINITY REU-2425W


Rinnai High Capacity Continuous Flow Gas Hot Water System

© Copyright Rinnai Australia Pty Ltd A.C.N. 005 138 769 A.B.N. 74 005 138 769 All rights reserved Produced by Technical Services Department February 2004 - Issue 2

No portion or part of this manual may be copied without prior permission from Rinnai Australia. Rinnai Australia takes no responsibility for the accuracy or otherwise of information contained in this manual, and reserves the right to make modifications and change specifications without notice.

Key to Warning Symbols

Failure to comply with the following instructions may result in serious personal injuiry or damage to the appliance.

Be careful of possible electric shock. Wiring inside this appliance may potentially be at 240 Volts.

Remove the plug from the source when carrying out any of the following activities.

Read Fault Diagnosis and Wiring Diagram carefully to avoid incorrect wiring

Do not disassemble. Parts within cannot be exchanged or diagnosed faulty.

Please follow instructions carefully to ensure safe and appropriate service. After completing the service and confirming that there no gas leaks or incorrect wiring, test operation of unit according to the Customer Operating Instructions. After confirming normal operation, explain what was serviced to the customer and operation principles if necessary.

This manual has been compiled by Rinnai Australia Technical Services Department. While many individuals have contributed to this publication, it will be successful only if you - the reader and customer - find it useful. We would like to extend an invitation to users of this manual to make contact with us, as your feedback and suggestions are valuable resources for us to include as improvements. Rinnai are constantly working toward supplying improved appliances as well as information, and specifications may be subject to alteration at any time.

 $\begin{array}{c} \text{SM Infinity REU-2425W} \\ \text{Issue N}^{\underline{\text{o}}}2 \end{array}$

Table of Contents

1.	Introduction	. 1
2.	Features	. 2
3.	Dimensions	. 3
4.	Remote Controls	. 4
5.	Safety Devices	. 7
6.	Specification	. 8
7.	Cut-away Diagram	. 9
8.	Schematic Diagram	10
9.	Combustion Specification	11
10	. Dip Switch Positions	12
11	. Water Flows	14
12	. Main Components	16
13	. Time Charts	18
14	. Operation Flow Principle	19
15	. Operation Principles	21
16	. Error Messages	23
17	. Diagnostic Points	24
18	. Wiring Diagram	25
19	. Fault Diagnosis	26
20	. Electrical Component Analysis	35
21	. Gas Conversion	39
22	. Gas Pressure Setting Procedure	40
23	. Dismantling for service	41
24	. Exploded Diagram	47
25	. Parts list	51

This glossary of terms and symbols is provided to assist you in understanding some of the language used throughout this manual.

dB(A)	-	sound pressure level in decibels, "A" range			
DC	-	direct current			
AC	-	alternating current			
WFCD	-	water flow control device			
FB	-	feedback information			
Hz	-	Hertz			
IC	-	integrated circuit			
kcal/h	-	kilocalorie per hour			
kPa	-	kilopascals			
LED	-	light emitting diode			
L/min	-	Litres per minute			
mA	-	milliamps			
MJ/h	-	megajoule per hour			
mm	-	millimetres			
mmH ₂ O	-	millimetres of water (guage pressure)			
NO _X	-	oxides of nitrogen (NO & NO ₂)			
OHS	-	overheat switch			
PCB	-	printed circuit board			
CPU	-	central processing unit			
POT	-	potentiometer			
rpm	-	revolutions per minute			
SV	-	solenoid valve			
Ø	-	diameter			
$\Delta^{o}C$	-	temperature rise above ambient			
POV	-	modulating valve			
TE	-	thermal efficiency			
TH	-	thermistor			
Τ _{IN}	-	temperature of incoming water			
T _{OUT}	-	temperature of outgoing water			

1. Introduction

The brand name Infinity refers to "Endless Hot Water". The Infinity 24 has been developed in response to the growing changes in the lifestyle of consumers, and the increasing diversification and sophistication of demand in the marketplace.

The Infinity series offers reduced cost, advanced safety features, and an option to connect one, two, or three remote control pads.

The Infinity 24 is delivered with the maximum hot water temperature of 50°C, with or without remote controls connected.

About the Infinity

The front cover of each appliance in this series is formed from 0.6 mm coated steel, secured to the main box assembly by 4 screws. Seals around the front cover and flue outlet prevent water from entering the appliance.

Air inlets are situated in the front panel. The general layout of components is shown on the cutaway diagram on page 9. All components are supported within a box formed from 0.8 mm coated steel.

The heat exchanger occupies the top section of the box, and the burner is situated in a chamber formed from 0.8 mm aluminised steel attached to the bottom of the heat exchanger.

The air for combustion is supplied by a fan which is connected to the burner box by a duct at the left hand side of the appliance.

Gas and water controls are situated at the bottom right of the appliance, directly under the manifold. The products of combustion are expelled from the appliance through a flue outlet situated on the front of the appliance, at the top.

The burner assembly is made up of 18 identical stainless steel bunsen burners, secured by an aluminised steel framework. An aluminium manifold with 18 integrally moulded injectors supplies gas to the burners, and is attached to the lower front cover of the burner box.

There is one thermistor, it is located on the outgoing hot water supply tube, near the outlet of the heater.

2. Features

Installation

The light-weight, slim, and compact form enable easier, improved appearance installations. The remote controls (where fitted) are connected to the appliance by 2-core non-polar cable, ensuring easy wiring and eliminating misconnection problems.

Low Noise Level

Low noise level design enables these appliances to be installed in units, flats, townhouses, and other high density residential areas with little concern about noise disturbances.

Safety

Various safety devices controlled by a micro-computer ensure complete safety. Also, the antifrost device (where fitted), automatically prevents the water inside the appliance from freezing by using small electrical ceramic heaters connected to the pipework at strategic locations.

Economy

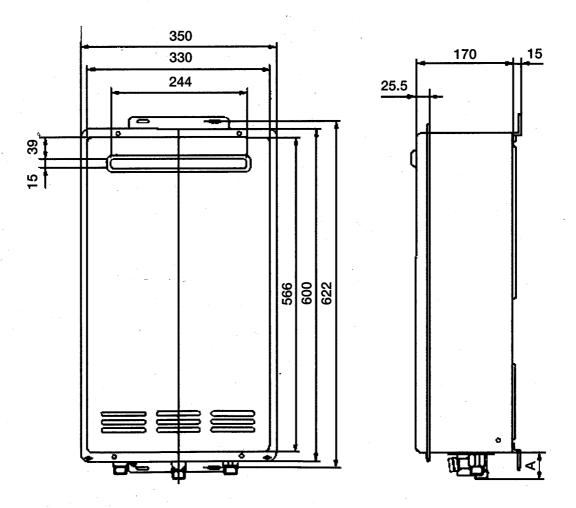
Direct electronic ignition to the main burner eliminates wasteful pilot gas consumption. The combustion fan rpm is proportionally controlled with gas consumption. This maintains high energy efficiency as the gas consumption changes.

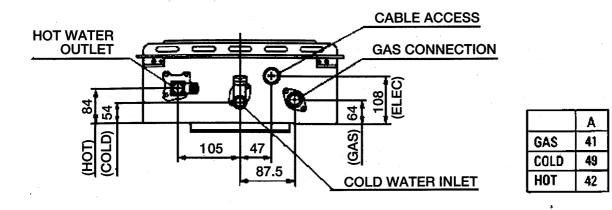
Water Supply Control

The water supply capacity varies proportionally from 2.7 L/min to 24 L/min. A suitable volume of hot water can be supplied throughout all seasons by the water flow control device and water flow servo mechanism. REU 2425W model will supply up to 24L/min, (maximum unmixed), controlled by an automatic electro-mechanical water flow device. See "Water Flows" on page 14 for precise details on water flow.

Water Temperature Control

With a remote control connected, the hot water control range is between 37°C and 50°C (in 12 steps). With or without a remote control connected the outgoing hot water temperature is fixed to 50°C maximum with no remote. This means that the Infinity Series can be set to comply with various State laws on temperature control in homes, child care centres, and elderly care centres. The maximum temperature selectable on the bath remote control is 50°C (this is a safety feature).


Over Temperature Protection

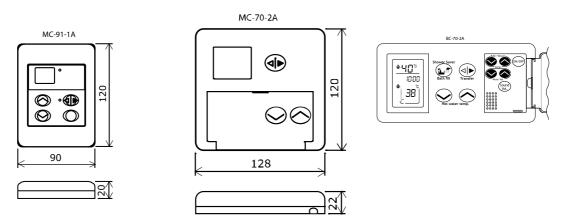

All Infinity models incorporate a device to prevent the hot water temperature exceeding the preset temperature by more than 3°C.

Temperature Locks

With the remote control(s) connected, the pre-set water temperature can only be altered between 37°C and 43°C while the hot water is flowing. This helps to avoid inadvertently increasing the temperature to a hazardous level whilst someone is in the shower. While the water is flowing, the remote control(s) can be turned off, but not on again.

Note: All dimensions are in mm.

Remote Controls


Remote Controllers are an optional extra. 'Universal' and 'Deluxe' Controllers can be fitted. Universal controllers allow temperature selection only. Deluxe controllers have temperature selection, bath-fill and voice prompting functions. For detailed information regarding controller operation refer to the 'How to use your water heater' booklet supplied with the appliance. Other manufacturers' controllers are NOT compatible with this appliance.

Universal Controller (Model: MC-91-1A)

Up to 3 Universal Controllers can be fitted to the appliance. They are normally installed in the areas where the majority of hot water is used, for example, the Kitchen, Bathroom, Ensuite and Laundry.

Deluxe Controllers (Models: MC-70-2A) and (BC-70-2A)

Deluxe Controllers have 'Kitchen' (MC-70-2A) and 'Bathroom' (BC-70-2A) versions. 'Kitchen' Controls are intended for the Kitchen or other convenient area where the majority of hot water is used. 'Bathroom' Controllers are intended to be fitted in the Bathroom or ensuite and allow the user to have a bath filled to the required level and temperature automatically.

Up to two 'Deluxe" controllers can be connected as follows:

Kitchen	Bathroom
MC-70-2A	
MC-70-2A	BC-70-2A

If a Third controller is required, a 'Unviersal' controller can be included as follows:

Kitchen	Bathroom	Laundry
MC-70-2A	BC-70-2A	MC-91-1A

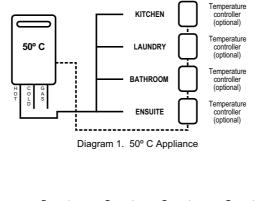
Positioning of Controllers

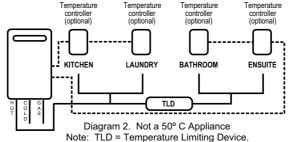
Controllers must be installed in shaded and clean locations. They should be fitted out of reach of children (suggested height from floor at least 1500mm). Controllers are water resistant, however, durability is improved when positioned outside the shower recess or at leat 400mm above the highest part of a sink, basin or bath.

DO NOT INSTALL THE CONTROLLERS

- NEAR A HEAT SOURCE, SUCH AS A COOK TOP, STOVE OR OVEN. HEAT, STEAM, SMOKE AND HOT OIL MAY CAUSE DAMAGE.
- IN DIRECT SUNLIGHT.
- OUTDOORS UNLESS AN ENCLOSURE IS PROVIDED WHICH PROTECTS THE CONTROLLER AGAINST SUNLIGHT AND DUST INGRESS.
- AGAINST A METAL WALL UNLESS THE WALL IS EARTHED IN ACCORDANCE WITH AS/ NZ3000.

Remote Controller Connection


Remote controls operate at extra low voltage (12 Volts DC) which is supplied from the appliance. Controllers are supplied with 15 m of electrical cable. The cable wires for connection to the appliance are fitted with spade terminals.


Extension cables are available from Rinnai. Alternatively, a two core sheathed (double insulated) flex with minimum cross-sectional area of 0.5 mm² can be used. Maximum cable length is 50 m. For connection refer to the "CONNECTING REMOTE CONTROL CABLES" section.

Water Heater and Controller installation configurations

If there is a label on the appliance casing that contains the text **"This appliance delivers water not exceeding 50°C"**, local regulations may permit it's installation without a Temperature Limiting Device. Installations without a Temperature Limiting Device are shown in Diagram 1. If you are unsure about your local regulations contact your regulating authority or Rinnai.

If the appliance does not have this label, or your local regulations require installation with a Temperature Limiting Device then install the appliance in accordance with Diagram 2.

IMPORTANT: If the appliance is to deliver water primarily for the purposes of personal hygiene in an early childhood centre, primary or secondary school, nursing home or similar facility for young, aged, sick or disabled persons as defined in AS/NZ3500.4 a Temperature Limiting Device (TLD), such as a Tempering Valve, may be required even if the appliance is set to 50° C or less. For these types of applications contact Rinnai.

Connecting remote control cables

Do not attempt to connect the remote control cable terminals to the appliance with the power on.

RISK OF ELECTRICAL SHOCK

Connecting One or Two Controllers

- 1. Isolate the power supply.
- 2. Remove the front cover from the Appliance (4 screws) fig. 1.
- 3. Thread the cable(s) through the cable access hole at the base of the appliance.
- 4. Locate the terminals for controls, the position of which is marked on the Printed Circuit Board casing. Connect the spade connectors to the terminals on the P.C.B. (Fig. 2). Polarity is not important. Either wire colour can be connected to either terminal.
- 5. Replace cover of the Appliance. Ensure that the special screw is placed at the bottom right hand corner for earthing purposes.

Connecting Three Controllers

- 1. Isolate the power supply.
- 2. Remove the front cover from the Appliance (4 screws) fig.1.
- 3. Cut the spade connectors from 2 of the controller cables to be connected to the appliance (4 spade connectors should be cut off) and discard. Connect the wires from these two cables and terminate into two new spade connectors as shown in fig.3. Spade connectors are available from your local electrical component retailer.
- 4. Located the terminals for controls, the position of which is marked on the Printed Circuit Board casing. Connect the 4 spade connectors to the terminals on the P.C.B. (Fig. 2). Polarity is not important. Either wire colour can be connected to either terminal.
- 5. Replace cover of the Appliance. Ensure that the special screw is placed at the bottom right hand corner for earthing purposes.

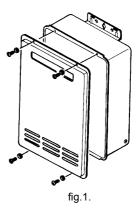
MC-91A Controller Programming

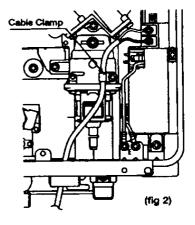
Is there a label on the appliance casing that contains the text.

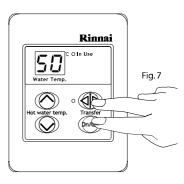
"THIS APPLIANCE DELIVERS WATER NOT EXCEEDING 50° C

- IF YES:No further action required.
- IF NO: You will need to program Kitchen controller to enable selection of temperatures higher than 50° C.

STEP 1:


For the controller in the KITCHEN only, press and hold the 'Transfer' and 'On/Off' buttons simultaneously (see Fig 7.) until a 'beep' is heard (approximately 5 seconds).


STEP 2:


When the controller fitted in the KITCHEN is switched on, it should be possible to select temperatures higher than 50° C. If not, repeat Step 1.

Note:

- If the kitchen controller is replaced, repeat STEP 1 above for the replacement controller.
- If the kitchen controller is swapped with another controller (for example, the controller fitted in a bathroom), repeat STEP 1 for the controller moved from the kitchen to the bathroom. Then perform STEP 1 for the controller moved from the bathroom to the kitchen.

Flame Failure

Situated to the right of the burner at the front, the flame rod monitors combustion, preventing any discharge of gas to the burner if there is no flame, by sending a signal to the PCB which in turn isolates the gas.

Over Heat Protection Device

Also referred to as an Over Heat Switch. This device is fitted to a bend section at the inlet to the heat exchanger. If the flame remains on the burner after the tap is closed, and the water temperature inside the heat exchanger reaches 97° C, a DC 12 volt bi-metal cut-off switch isolates the gas to the solenoids.

No Water

Should the incoming water flow become restricted or stop, then the water flow sensor will cease to send a magnetic pulse signal to the PCB, in turn isolating the flow of gas to the burner.

Thermal Fuse

Wrapped around the entire surface of the heat exchanger, if the heat exchanger burns out, or the temperature outside it reaches 129° C, the thermal fuse melts, breaking the electronic circuit. Current to the gas solenoid valve circuit is cut, and combustion stops, shutting down the unit.

Pressure Relief Valve

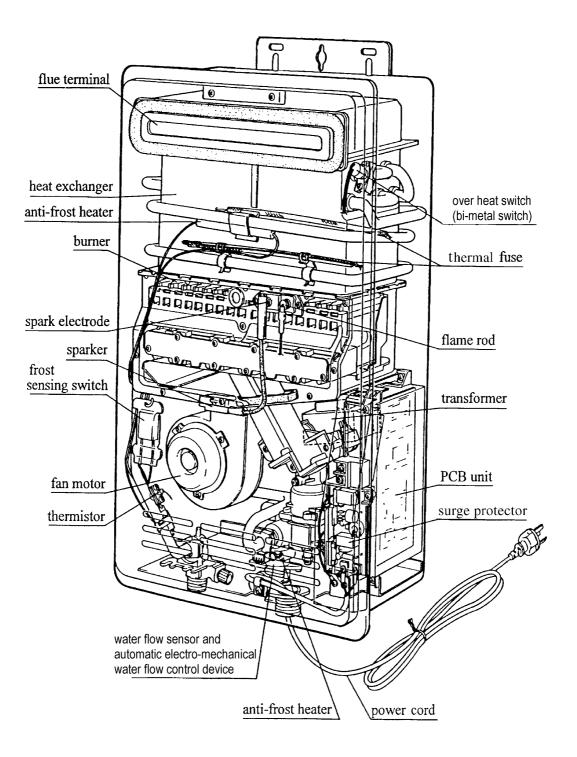
This spring and seat type valve located on the hot water outlet will release the built up pressure if the pressure inside the heat exchanger reaches 2100 kPa until 1500 kPa is maintained.

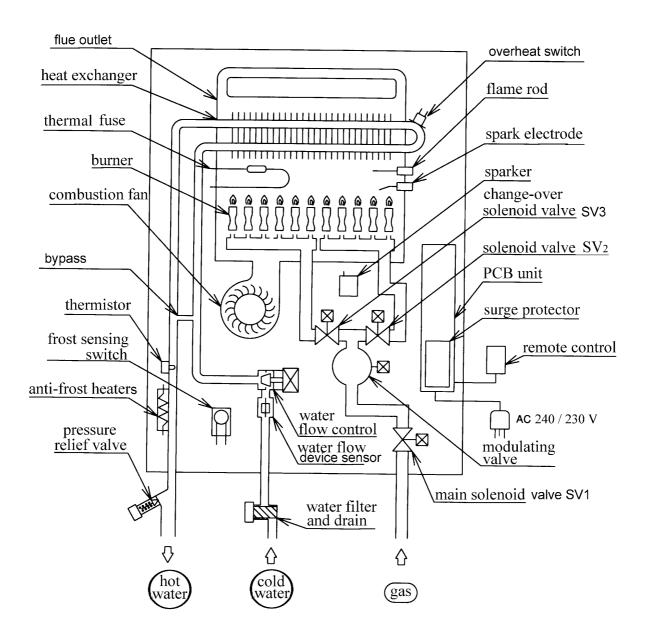
Combustion Fan Revolution Check

The combustion fan rpm is continually monitored by a magnetic pulse counter connected to the PCB. If the fan revolutions deviate from the speed required for complete combustion, a signal is sent to the PCB and the revolutions adjusted accordingly. (If not the unit shuts down)

Automatic Frost Protection

When the outdoor temperature drops and the temperature inside the appliance goes below 3.5° C, the frost sensing device is activated, and the anti-frost heaters prevent the water in the appliance from freezing. These anti-frost heaters remain ON until the temperature inside the appliance rises to 11.5° C. There are 5×16 Watt anti-frost heaters located at various points in the main water flow area of the appliance. The anti-frost protection device will prevent freezing down to -20° C in a no wind situation, and -15° C in a windy situation.


3°C Over Temperature Cut-Off


The temperature of the outgoing hot water is constantly monitored by the water temperature thermistor located near the outlet of the appliance. If the outgoing water temperature reaches 3°C above the preset temperature, the burner will automatically go out. The burner will only ignite again once the outgoing hot water temperature falls below the preset temperature.

6. Specification

Rinnai Model No.	REU-2425W				
Type of appliance	Temperature controlled continuous flow gas hot water system.				
Operation	With or without remote controls, mounted in kitchen,				
	bathroom, or ensuite.				
Exhaust system	Forced combustion				
Installation	Externally mounted				
Maximum gas rate	188 MJ/h				
Minimum gas rate	21 MJ/h				
Output (Kw)	41.7				
Efficiency rating	80%				
Hot water capacity, unmixed	2.7 to 24 L/min				
Hot water capacity, mixed (25° C rise)	2.7 to 24 L/min				
Default temperature (without remote)	50°C				
(Set using switches on PCB)	(40,43,50,55,60,65,75°C)				
Maximum temperature ceilings	50°C (set by combination of switches on PCB)				
(remote connected)	Other temp.settings than 50°C avail. from alternative PCB				
Temperature range (with remote)	37 to 50°C in 13 steps				
Approved gas types	Natural; Propane				
Dimensions	Width - 350 mm				
	Height - 600 mm				
	Depth- 170 mm				
Weight	18 kilograms.				
Noise level	49 dB(A)				
Connections	Gas supply- R: / 20mm				
	Cold water inlet- R: / 20mm				
	Hot water outlet- R: / 20mm				
Ignition system	Direct electronic ignition				
Electrical consumption (Watts)	Normal - 55				
	Standby - 8				
	Anti frost protection - 80				
Water temperature control	Simulation feedforward and feedback.				
Water flow control	Water flow sensor & automatic electro-mechanical water flow control device				
Minimum operating pressure	200 kPa				
Nominal operating pressure	200 ~ 1200 kPa				
Power supply	Appliance- AC240 Volts 50 Hz.				
	Remote control- DC12 Volts (Digital)				
Safety devices	Flame failure- Flame rod.				
	Boiling protection- 105°C lockout thermistor (25 seconds)				
	Remaining flame [OHS]- 97°C bi-metal switch				
	Thermal fuse- 129° C				
	Pressure relief valve- Opens-2100kPa, closes-1500 kPa				
	Automatic frost protection- Bi-metal sensor & anti-frost heaters				
	Combustion fan rpm check- Integrated circuit system				
	Over current- Glass fuse (5 Amp).				
Remote control	MC-91-1A- Universal control				
	MC-70-2A- Kitchen control				
	BC-70-2A- Bathroom control				
Remote control cable	Non polarised two-core cable				

7. Cut-away Diagram

9. Combustion Specification

				REU-2425W
Input	NG/Propane	HI	MJ/h	188
	LPG #	LO		21
Gas Consumption	NG/Propane	н	kW	52.3 (50)
	LPG #	LO		5.93
Integral Injector size (18) NG			mm	Ø 1.7
	Propane/LPG #			Ø 1.0
Damper (1 piece)	NG			NIL
	Propane/LPG #			A
Pressure	NG	HI	kPa	0.90
		LO		0.08
	Propane/LPG #	HI	kPA	2.26 (1.90)
		LO		0.17 (0.15)
Burner type		NG/ Propane Common		
Dip Switch positions	Refer to page 12			

Note: LPG values specified in brackets are for New Zealand.

10. Dip Switch Positions

Please do not adjust the DIP Switch Positions before reading this information.

The dip switches are provided so that the water heater can be set to different operating configurations. In some instances such as nursing homes or even domestic situations, it may be necessary to limit the temperature of the hot water coming from the units.

The set-up configuration for the water heater differs depending on:

- · Gas type
- Maximum water flow select
- · Temperature limiting requirements
- Alternate type

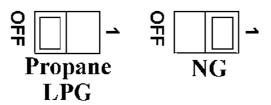
DIP Switches explained

Top switch settings 1 ~ 8

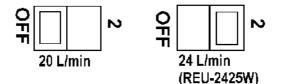

- 1: Gas type (used only during conversion)
- 2: To select maximum water flow volume

4 to 8: To select the temperature with or without remote connected.

Bottom switch settings 1 ~ 3


1: Factory use (To select the capacity of appliance) 2 & 3: Combustion control

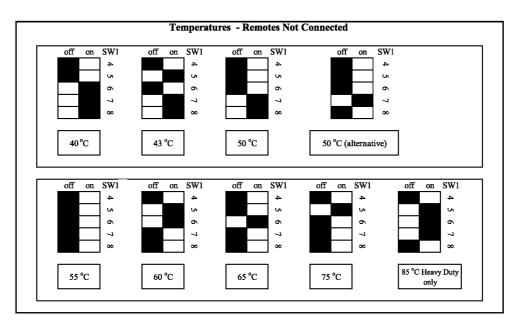
The Infinity REU-2425W model delivers maximum hot water temperature limited to 50° C, however alternative PCB for the other maximum temperature of hot 40° C, 43° C, 50° C, 55° C, 60° C, 65° C, or 75° C available.



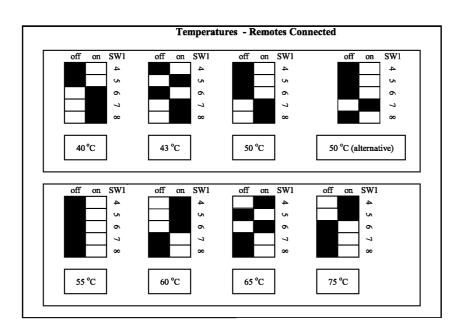
1. Gas Type

Only alter gas type positions when converting. For conversion instructions refer to page 39.

2. Maximum Water Flow Select



3. Temperature Limiting


There are different positions, depending on the temperature limit required and whether the remote controls are connected or not.

Dip Switch Settings for Alternative PCB

a. Fixed hot water temperature "without" remote connected

Upper limit hot water temperature "with" remote connected

Ø

Note:

a) The black squares indicate the position of switches.

b) It will be noted that some dip switch configurations are the same for a given temperature whether controllers are connected or not. These similarities are not mistakes.

11. Water Flows

A simple calculation of the water flow rate, in litres per minute, can be made using the charts on the next page, or simply using the formula provided below. The charts on the following pages indicate the water flow from the Infinity at various combinations of incoming water temperatures, and the selected temperature at the remote control.

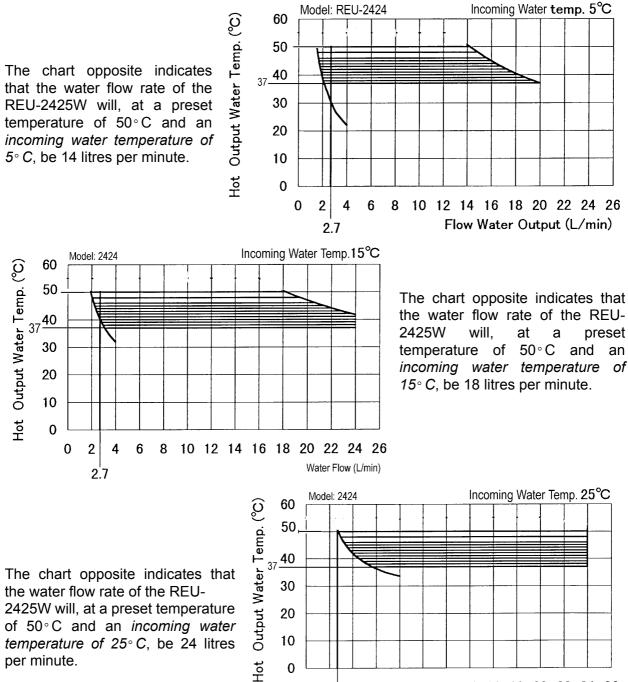
How to read the charts:

The vertical plane indicates the selected temperature at the remote, and the horizontal plane indicates the flow of water in litres per minute. Remote control range is between 50° C°, therefore the water flow charts only show the temperatures in that range. The temperature rise is the difference between the temperature of the incoming water and the selected temperature at the remote controls.

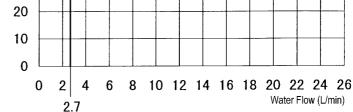
Select the appropriate chart depending on the incoming water temperature. Draw a horizontal line across the graph from the selected temperature at the remote until it intersects the curve. At this point draw the line in the vertical direction. The water flow is indicated where the line intersects the bottom of the chart.

How to calculate water flows:

The following information is an outline of the formula required to measure accurately the flow rate in litres per minute, as well as being the base for the charts on the next page. The most useful way in which this formula can be utilised, is to calculate the water flow rate where there is maximum gas input of 188MJ/h.


Formula: IN x TE = $(^{T}OUT - ^{T}IN) \times 60 \times Q$

	-	_	
Where:	I _{IN}	=	Incoming water temperature.
	T_{OUT}	=	Outgoing water temperature as selected at the remote
	IN	=	Gas input [#] .
	TE	=	Thermal efficiency*.
	Q	=	Water flow in litres per minute.

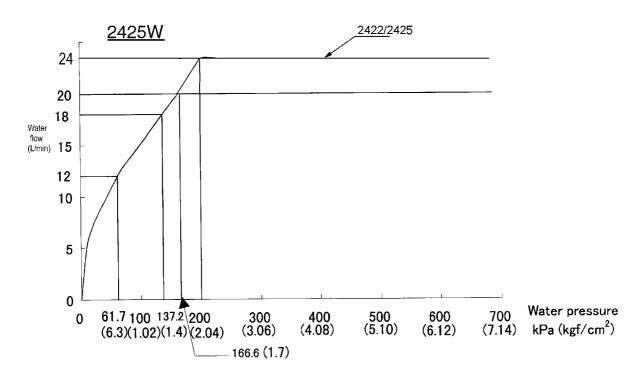

- # This is the maximum gas input converted from MJ/h into kilocalories. As 1 kilocalorie raises the temperature of 1 litre of water by 1 degree centigrade, the method of calculation is to multiply the input in MJ/h by 239.
- * Thermal efficiency may be in the range of 78% to 90%, depending on the temperature rise and water flow. For the purpose of the following calculation we have assumed an efficiency of 80%.

Example Data	Calculation
TIN =15°C TOUT = 60°C IN = 45000kcal/h TE = 80% Q = Water flow in Litres per minute	IN x TE = $({}^{T}_{OUT} - {}^{T}_{IN}) \times 60 \times Q$ $45000 \times 0.8 = (60 - 15) \times 60 \times Q$ $36000 = 45 \times 60 \times Q$ $\frac{36000}{45} = 60 \times Q$ $800 = 60 \times Q$ $\frac{800}{60} = Q$ 13.3 L/min

Unmixed Water Flows for the REU-2425W

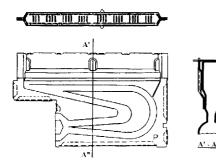
per minute.

Mixed Water Flows


Output	Incoming	Incoming	Incoming	Incoming	Incoming	Incoming
water temp.	+15° C	+25° C	+30 ° C	+35° C	+45° C	+50° C
Output water vol.	with mixing 40 L/min	with mixing 24 L/min	with mixing 18 L/min	17.1 L/min	13.3 L/min	11.9 L/min

1. Mechanical Water Regulator

Rinnai's unique water regulator mechanism ensures the hot water is maintained with no noticeable change to the desired temperature during use, even if water pressure drops due to another tap being turned on and increasing the demand.


The following graphs show that the maximum flow is approximately 24 L/min for the 2425. This maximum flow is reached at 200 kPa inlet pressure respectively.

Note: Although the 2425W model operates at very low water pressures, maximum performance is not reached unless the incoming pressure is 200 kPa or more.

2. Preset Bypass

A preset volume of cold water is mixed with water heated in the heat exchanger.

3. Burner

The burner assembly is made up of 18 identical stainless steel bunsen burners, secured by an aluminised steel framework. An aluminium manifold with 18 integral injectors supplies gas to the burners, and is attached to the front lower cover of the burner box.

4. Changeover Solenoid Valve

The changeover solenoid increases the flexibility of the regulator/modulating valve by supplying gas to the right hand side of the burner only, [up to 40% input] or both sides of the burner, [40% input] + [40 - 100%] through the tandem manifold.

5. Combustion Fan

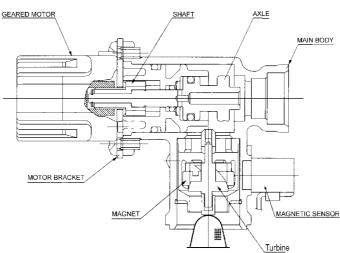
Air for combustion is supplied by a centrifugal fan driven by a DC motor. After a pre-purge period of 0.2 seconds, the fan speed is controlled by the PCB to provide the correct volume of air for combustion. The calculation for the fan speed is based upon incoming water temperature, water flow and the temperature selected on the remote controls.

The actual speed of the motor is continuously monitored by a magnetic pulse sensor.

This sensor emits 4 pulses per rotation of the fan.

This is the fan feedback or confirmation data processed by the PCB and used for 2 operations.

1. The fan speed is constantly corrected to provide optimum combustion conditions.


2. To determine the opening degree of the modulating gas valve, so that the gas rate always matches the volume of air for combustion, as well as the input required to heat the water.

The reason for controlling the opening degree of the modulating gas valve based upon data from the combustion fan is that the gas valve is able to react much more quickly to a change in control signal than the combustion fan. Controlling the gas valve based upon data from the combustion fan means that combustion remains satisfactory, even if there are sudden changes in input conditions.

6. Water Flow Sensor and Water Flow Control device:

Water flow is detected by a turbine/magnetic pulse generating device. Water flows through the turbine/magnetic sensor providing information to the PCB by generating a pre-determined number of pulses in proportion to the water flow. These pulses are counted by the PCB - no pulse indicates no water flow. The frequency of the magnetic pulses increases as the water flow increases, this enables the PCB to calculate the exact water flow, and determine the water flow in litres/minute. As soon as the required water flow is detected, the PCB activates the combustion fan. The combustion fan speed is monitored by a magnetic pulse sensor. The output from this sensor is processed by the PCB which opens the gas modulating valve to a degree proportional to the fan speed. See above for further details on the combustion fan.

The water flow control consists of a plug and barrel valve which is rotated by a motor to increase or decrease the volume of water passing through the heat exchanger.

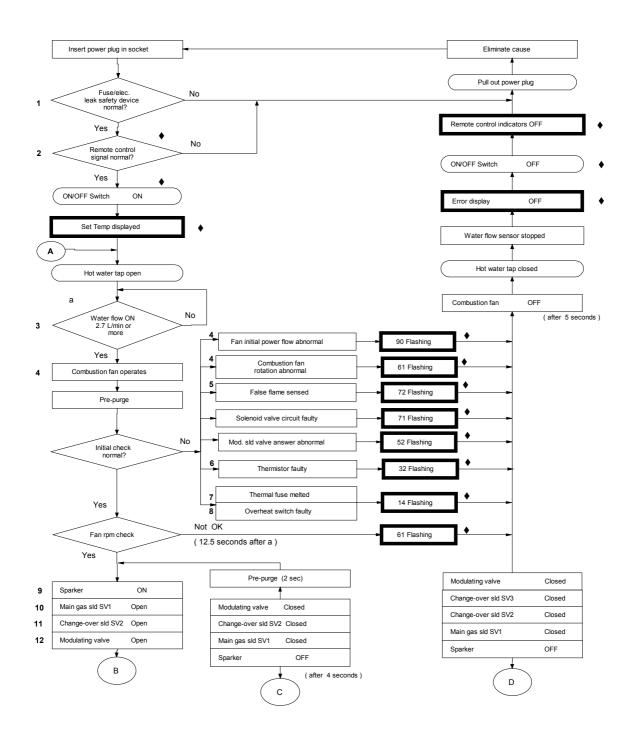
Water flow control device.

OUTLET OUTLET

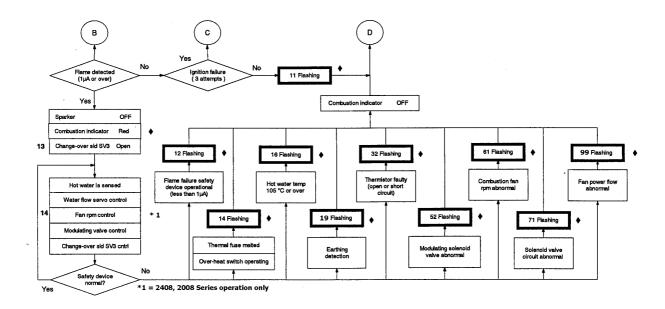
13. Time Charts

Normal Combustion Sequence

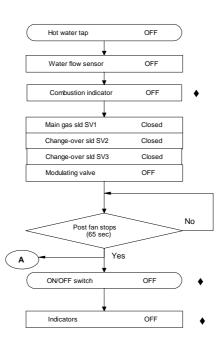
COMBUSTION SPOCENCE	INSERT POWER Plug in Socket OX	SW TAP ON OPEN	FLAME MIN	-> -	~ ~	МАХ	TAP CLOSED	SW OFF
WATER FLOW SENSOR							///////	
WATER FLOW CONTROL DEVICE		1111XIIIIIXIII						
BY-PASS CONTROL DEVICE	OPEN TANK		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
FAN MOTOR		1SEC PRE PURGE	0.1SEC				-> 65SEC <	POST PURGE
MAIN SOLENDID SV						111111	7//////	A
SƏLFNƏ I (7 SV1		0.1SEC	<		VIIIIIXIII		7//////	
SOLENCID SV2		0.1SEC >	<u> </u>	7//////				
SOLENDID SV3					7///			
MODULATING SOLENOID		Ø			The TITT A		//////	
IGNITCR				3				
FLAME ROD			<i></i>	-				
CUTGOING WATER THERMISTOR								minim
HEAT EXCHANGER THERMISTOR								1111/2011
" ON" INDICATOR								77777
" IN USE" INDICATOR			7//////				///////	
DIGITAL MON!TOR				ER TEMPERATURE				11/1/


Error Sequence (Ignition / Flame Failure)

COMBUSTION	TAP	[GN]	TION MISS	т	AP		FAILURE
SEQUENCE	OPEN				CLOSED		ME LURE
WATER FLOW SENSOR	777777777						
WATER FLOW CONTROL DEVICE	TITIKIN					6 777777777777777777777777777777777777	
BY-PASS CONTROL DEVICE					111111111111		
FAN MOTOR	(TTA)		[]]]haanaanin	POST PURGE			POS" PURGE
MAIN SOLENOID SV				5SEC		Villillilli	_SSEC_
SOLENOID SV1			ā			V/////////////////////////////////////	1
SOLENOID SV2						Viiliiliiliiliiliili	
SOLENOID SV3	Ø	Ø	0			Vallanda	7
MODULATING SOLENOID						V	7
IGN! TOR	82						
FLAME ROD	<	4SEC	SEC ASEC				
OUTGOING WATER THERMISTOR							XIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
HEAT EXCHANGER THERMESTOR							XIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
" ON" INDICATOR	7//////////////////////////////////////						
" IN USE" INDICATOR							3
DIGITAL MONITOR	V/////////	WATER TEMPERATUR	E ////////////////////////////////////	aaaaaa		A 1 11111111111111111111111111111111111	
				11 FLASHING			12 FLASHING


Pre-purge Defect Sequence

COMBUSTION SEQUENCE	TAP OPEN	TAP SW CLOSED OFF
WATER FLOW SENSOR		
WATER FLOW CONTROL DEVICE		
FAN MOTOR		INSPECTION LINE-
FAN ROTATION INSPECTION	<	5SEC
" ON" INDICATOR		
" IN USE" INDICATOR		
DIGITAL MONITOR	WATER TEMPERAT	


61 AND 10 FLASHING

• Only applicable when remote control is connected

TURN OFF

• Only applicable when remote control is connected

15. Operation Principles

The preset temperature is selected at one of the remote controls (where fitted). Where no remote control is fitted, the default temperature (Heavy Duty only) depending on the position of dip switch numbers 4 to 8 (see page 12).

When the unit is first plugged into 240 Volts, the PCB assumes an incoming water temperature of 25° C, this prevents the appliance starting on HIGH, and producing very hot water the first time it is used.

The data used to determine the outgoing water temperature initially is incoming water flow, and the remote control pre-set temperature.

From the incoming water flow and remote control pre-set temperature data, the CPU is able to determine a suitable gas rate to kick the appliance off, once a hot water tap opens.

This calculation of temperature rise and water flow is called simulation feed-forward.

The water heater calculates incoming water temperature by subtracting the theoretical temperature rise from the outgoing hot water temperature, to establish the correct gas flow.

When a hot water tap is opened, water begins to flow through the appliance. The turbine in the water flow sensor begins to revolve. The revolution speed is proportional to the water flow. A sensor located inside the device relays information in the form of magnetic pulses to the main PCB to determine whether or not water is flowing, and also, the volume of water flowing. When a pre-determined water flow is sensed, the ignition sequence begins.

The combustion fan pre-purges the combustion chamber. A rev counter on the combustion fan indicates the fan rpm to the main PCB. Once the pre-purge cycle is completed, the PCB controls the fan rpm by varying the DC voltage to the fan motor. This maintains the correct air/gas ratio throughout the time the water heater is in use, to ensure good combustion.

The gas is ignited by direct electronic spark and the flame is sensed by the flame rod. The opening degree of the modulating valve is determined by the combustion fan speed.

The changeover valve directs gas to one side or both sides of the burner. At the point where the changeover valve opens or closes, the modulating valve is instantly re-adjusted by the PCB to compensate for the change in the number of burners in use. From the information provided by the water flow sensor and the water temperature thermistor, the PCB determines how much gas is required to heat the water to the temperature selected on the remote control.

The PCB is programmed to provide the maximum volume of water possible at a given temperature rise. As the water flow from the tap is increased, the PCB increases the gas and air flow to the burner.

Once the maximum gas rate is reached the PCB begins to control the water flow through the appliance in order to maintain the preset temperature. This is achieved by the PCB turning the valve within the water flow control device by means of a stepping motor.

The water flow control device operates at high water flows and/or high temperature rises. When the temperature rise is low, or the water flow is restricted by the hot water tap, then the device may not be required to operate. [See section on "Main Components" on page 16, for clarification].

There is no direct connection between the mechanical water flow control device with water flow sensor and the PCB, therefore, there could be occasions when the input required to heat the water exceeds the capacity of the appliance, and water at a temperature lower than that requested on the remote control is output. In this case, manually reducing the water flow at the tap will increase the temperature.

Once hot water is flowing the water temperature thermistor senses the outgoing water temperature.

The PCB is continually adjusting both the gas input and water flow to maintain a constant temperature. It also continually monitors the combustion fan rpm adjusting the gas rate to match.

When the hot water tap is turned off, the water flow sensor stops revolving, and the magnetic pulse ceases, indicating to the PCB that there is no water flowing, in turn the PCB closes the gas valves. The combustion fan continues to operate for 65 seconds. This is to provide quicker ignition when the tap is turned on and off in rapid succession, as it removes the need for a pre-purge cycle, and allows the burner to re-light immediately when a hot water tap is opened again.

The PCB stores data on the calculated incoming water temperature, ready for when the hot water is turned on again. The data is used to calculate the initial gas flow.

16. Error Messages

Error messages are displayed as numbers flashing on the remote controls.

X = Does not operate

Error Code	Problem	Symptom	Main SV	Solenoid Valve	Changeover SV	Combustion Fan	Sparker
-	Water flow sensor faulty	Does not operate	Х	X	Х	Х	Х
71	Solenoid valve driving circuit faulty	Does not operate	Х	X	Х	Х	Х
72	Flame sensing device faulty	Does not operate	Х	Х	Х	Х	Х
32	Short or faulty wiring in water temperature thermistor	Does not operate	Х	X	Х	Х	Х
-	Water flow control device faulty	Water flow is not controlled, water temperature incorrect	-	-	-	-	-
61	Combustion fan faulty	After 12.5 seconds operation	Х	X	Х	Х	X
11	Sparker faulty	Stops without flame igniting	-	-	-	-	Х
11	Main solenoid value faulty	Stops without flame igniting	Х	-	-	-	-
11	Solenoid valve faulty	Stops without flame igniting	-	X	-	-	-
-	Changeover solenoid valve faulty	Incorrect water temperature	-	-	Х	-	-
12	Flame sensing device faulty	Stops second time burner has been extinguised	Х	X	Х	Х	Х
16	Outgoing water temperature abnormal	Operates, then stops	Х	X	Х	Х	Х
14	Remaining flame safety device operating	Operates, then stops	Х	X	Х	Х	Х
14	Thermal fuse faulty/blown	Operates, then stops	Х	Х	Х	Х	Х
19	Earthing faulty	Does not operate	Х	Х	Х	Х	Х
90	Fan (air) failure	Does not operate	Х	X	Х	Х	Х
99	Fan current abnormal	Operates, then stops	Х	X	Х	Х	X

Notes

1. Digital monitor does not illuminate when system is switched ON, or display drops out while appliance is operating.

•Check power supply to the appliance.

•Switch system OFF, the switch ON again, and re-attempt ignition.

2. Appliance operates however symptoms remain, with digital display dropping out and error coded message flashing.

•Isolate potentially faulty component using the component analysis table on page 40.

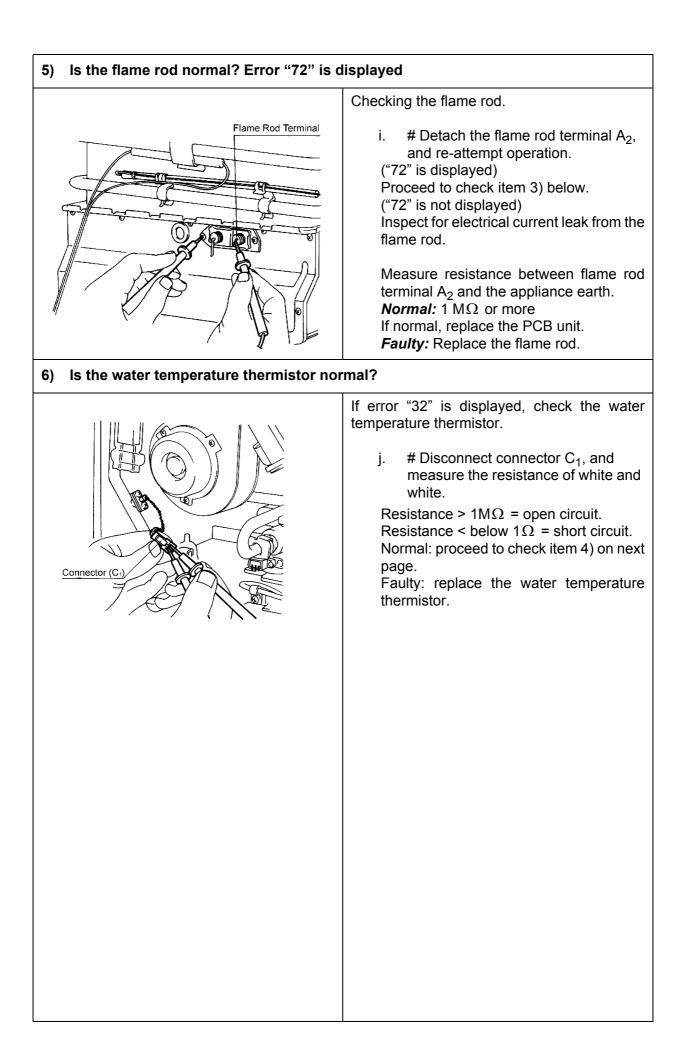
Flow chart is on page 19. Wiring diagram is on page 25.

Flow	Measurement Point			Component	
Chart No.	CN Wire Colour		Normal Value		
1	J ₄	brown-blue	AC 207~264 V	Surge Protector	
2	H ₁	black - white	DC 10~13 V	Remote Controls	
3	C ₂	red - black	DC 11~13 V	Water Flow Sensor	
		yellow - black	DC 2~10 V		
4	D	white - black	DC 2~9 V	Combustion Fan Motor	
	G	red - yellow	60~350 Hz		
5	A_2	yellow - body earth	AC 100 ~ 160 V	Flame rod	
			(over DC μ 1A		
6	C ₁	white - white	Thermistor resistance value Temp resistance 15° C 11.4~14 kΩ 30° C 6.4~7.8 kΩ	Thermistor	
7	B ₂	red - red	Below 1 Ω	Thermal Fuse	
8	B ₃	red - red	Below 1 Ω	Over Heat Switch	
9	I ₁	grey - grey	AC 90~110 V	Sparker	
10	I ₁	pink - black	DC 80~100 V 0.9~1.3 kΩ	Solenoid Valve (SV ₂)	
11	l ₂	yellow - black	DC 80~100 V 1.3~1.9 kΩ	Solenoid Valve (SV ₂)	
12	Β ₁	pink - pink	DC 0.5~25 V 60~100 Ω	Modulating Valve	
13	I	blue - black	DC 80~100 V 1.3~1.9 kΩ	Solenoid Valve (SV ₃)	
14	E ₁	red - blue	DC 11~13 V	Stepping motor	
		orange - grey			

Transformer Voltages and Resistances

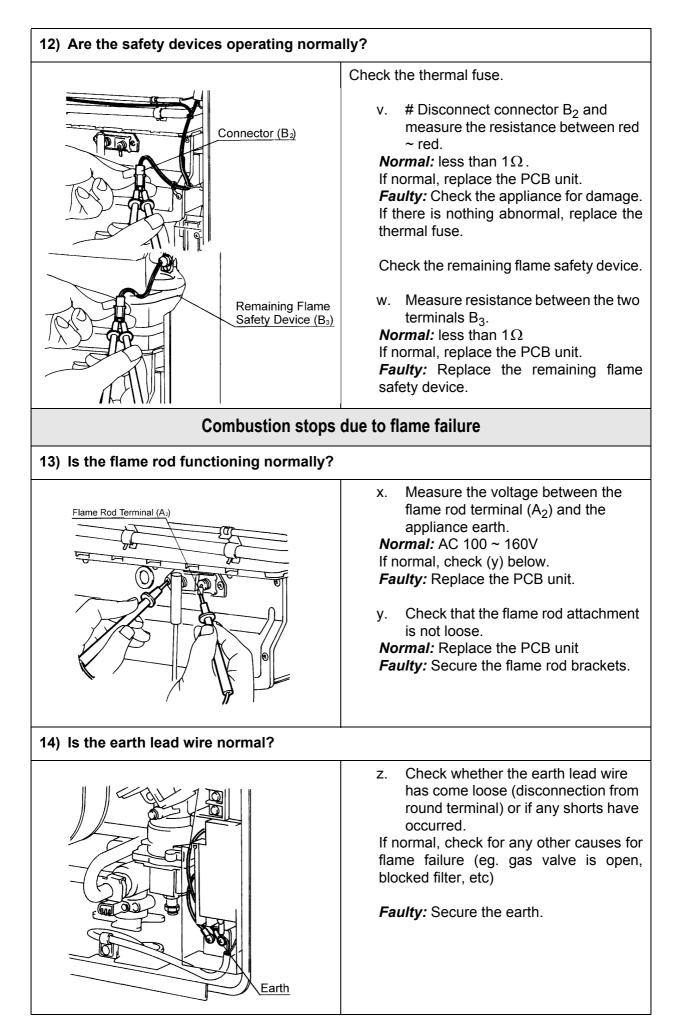
CN	Wire Colour	Normal Value
A	red - red	AC 90~110 V
F	green - green	AC 16~20 V
A	orange - orange	AC 13~30 V
A	brown - grey	AC 30~50 V
A	yellow - grey	AC 180~220 V

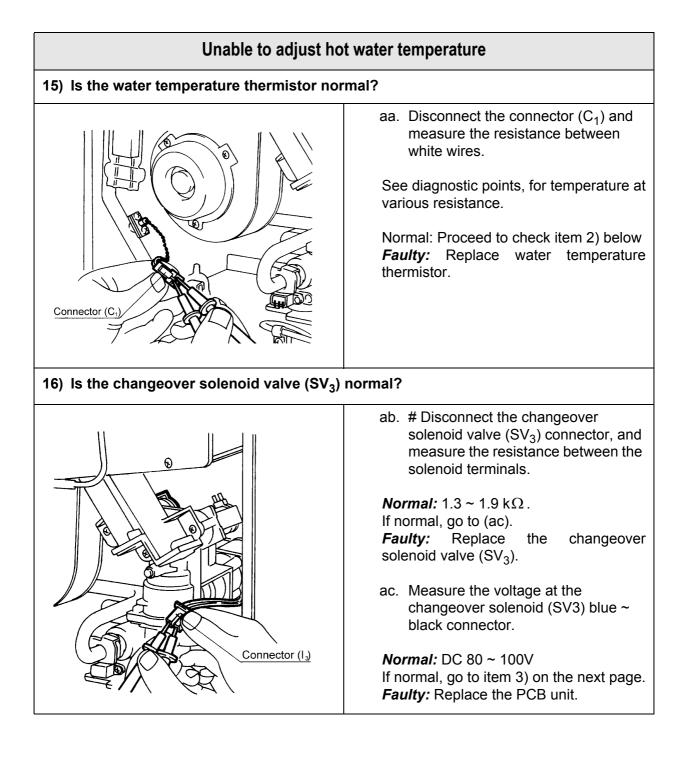
Ŷ


19. Fault Diagnosis

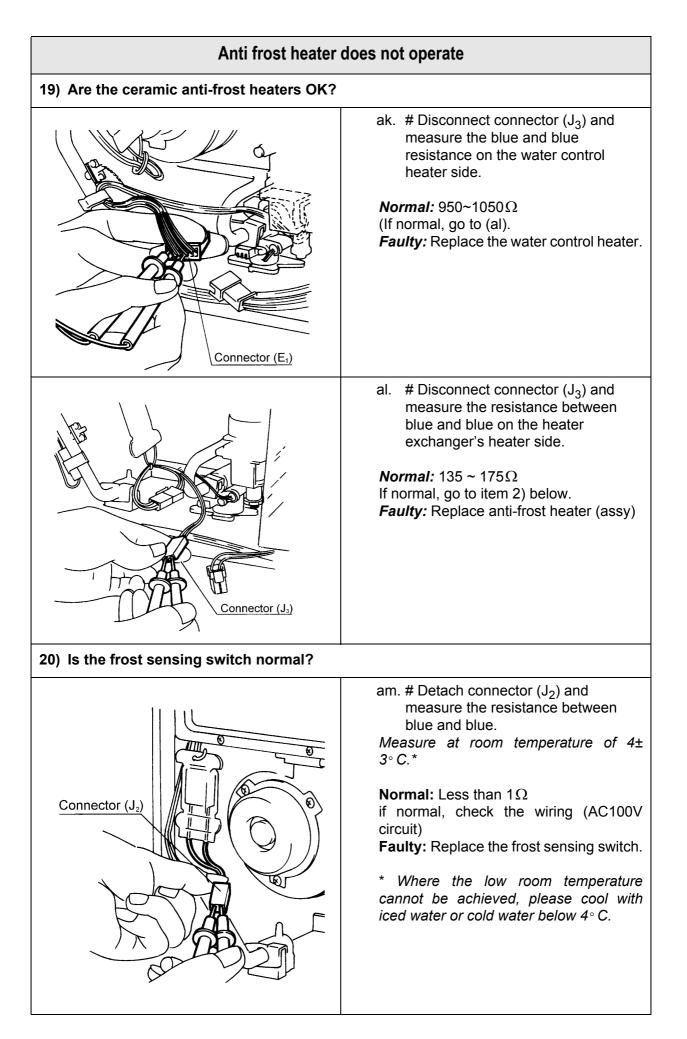
Before carrying out checks marked #, remove power cord from wall plug. Wiring diagram is on page 25.

Appliance will to operate (even remote control fails to operate)				
1) Is the fuse blown?				
Fuses are located in plastic holders in the main harness, on the lower right hand side of the appliance	 Check fuse a. Remove 240V plug from socket. b. # Measure resistance to check the electric fuse (3A). <i>Normal:</i> less than 1Ω If normal, proceed to check item 2) below. <i>Faulty:</i> Replace fuse (5A) If it blows again, investigate cause of short circuit. 			
2) Is the main transformer normal?				
Connector (A)	 Check the transformer c. Measure the voltage in between the red wires of the relay connector (A₁). <i>Normal:</i> AC90 ~ 110 V / 15 ~ 21Ω If normal, check (d) below. <i>Faulty:</i> Check for AC 90 ~ 110 V on the PCB terminal J black ~ black d. Check voltages below at upper PCB connector A. <i>Normal:</i> orange -orange AC 13 ~ 30V / 1.4 ~ 1.8Ω brown - grey AC 30 ~ 50V / 6 ~10Ω yellow - grey AC 180 ~ 220V / 0.4 ~ 0.6Ω If normal, check 3 at top of next page. <i>Faulty:</i> Replace the transformer. 			


Defer to diagram on bottom of any internet	o Chook the voltage of easter DOD
Refer to diagram on bottom of previous page.	 e. Check the voltage at centre PCB connector F, green~green. <i>Normal:</i> AC 16 ~ 20V If normal, check item 3) below. <i>Faulty:</i> Replace the transformer. Note: Transformer voltage above applies to the appliance in a standby, non-functioning state.
3) Is the remote control normal?	
Remote control terminal mount (H.)	Check voltage between the two remote control cable conductors. f. Check the voltage between terminals on the remote control terminal mount (H ₁). Normal: DC 10 ~ 13V If normal, check for open circuit or shorts before replacing the remote control. Faulty: Replace PCB.
No combustion (despite r	remote control indication)
4) Is the water flow sensor normal?	
Image: Construction of the construc	 g. Measure the voltage between red and black of the relay connector (a₂). <i>Normal:</i> DC 11 ~ 13V If normal, go to (h). <i>Faulty:</i> Replace water flow control. h. Measure the voltage between yellow and black of the relay connector (a₂) <i>Normal:</i> DC 2 ~ 10V If normal, go to 2). <i>Faulty:</i> Replace the water flow sensor.



Motor check If error "61" is displayed, check combustion fan. k. Measure the voltage at the connector (D ₁) black ~ red <i>Normal:</i> DC 6~40V (fan on) DC 0V (fan off) If normal, go (1) <i>Faulty:</i> Replace the PCB unit Fan Revolution Sensor Check I. Measure the voltage at connector D ₁ , black ~ yellow <i>Normal:</i> DC11~13V If normal, go (m) below <i>Faulty:</i> Replace the PCB unit m. Measure the voltage at connector D ₁ , black ~ white <i>Normal:</i> DC2~9V If normal, proceed to check item 5) below <i>Faulty:</i> Replace the combustion fan.
 Checking the motor n. Measure the voltage at connector I₄. grey ~ grey <i>Normal:</i> DC 90 ~ 110 V DC 0 V (when fan is OFF) If normal, check (o) below. <i>Faulty:</i> Replace the PCB unit o. # Disconnect I₄, and measure the resistance between sparker terminals <i>Normal:</i> >1MΩ If there is no spark, adjust or replace the electrode. <i>Faulty:</i> Replace the sparker.


9) Is main gas solenoid valve (SV₁) normal? If error "11" is displayed, check the main gas solenoid valve. blue p. # Disconnect the main gas solenoid valve (SV₁), connector and measure the resistance at the solenoid terminals. Normal: $0.9 \sim 1.3 \text{ k}\Omega$ If normal, check (q) below. Faulty: Replace the main gas solenoid valve. Measure voltage main gas solenoid a. valve (SV_2) pink ~ black connector. Normal: DC80~100V If normal, proceed to check item 7) below. Faulty: Replace the PCB unit. 10) Is the change over solenoid (SV₂) operating normally? If error "11" is displayed, check the change over solenoid valve (SV₂). # Disconnect the main gas solenoid r. blue blac valve (SV₂) connector, and measure the resistance at the solenoid terminals. *Normal:* 1.3 ~ 1.9 kΩ. If normal, check (s) below. Faulty: Replace the change over solenoid valve (SV_2) . Measure voltage at change over S. solenoid valve (SV₃) blue ~ black connector. Normal: DC 80 ~ 100V If normal, check item 8) below. Faulty: Replace the PCB unit 11) Is the change over solenoid valve (SV_3) normal? # Disconnect the change over t. solenoid valve (SV₃) connector, and measure the resistance at the solenoid terminals. *Normal:* 1.3 ~ 1.9 kΩ If normal, check (u) below. Faulty: Replace the change over solenoid valve (SV₃). Measure the voltage at changeover u. solenoid valve (SV₃) blue ~ black connector. Normal: DC 80 ~ 100V If normal, check item 9).

Faulty: Replace the PCB unit.

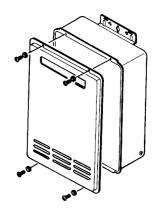
17) Is the modulating valve operating normal? ad. # Disconnect the modulating valve festoon terminals and measure the resistance at the terminals. *Normal:* 60 ~ 100Ω If normal, go to (ae). Faulty: Replace the modulating valve. Modulating Valve ae. Re-connect terminal and measure Terminal the pink ~ pink voltage at the modulating valve festoon terminal. Normal: DC 0.5 ~ 25 V If normal, go to (af) below. Faulty: Replace PCB unit. af. Investigate the change in gas secondary pressure when the remote control preset temperature is Connector (B) altered from 37 to 75° C. Normal: If the secondary pressure changes, proceed to check item 4) below. *Faulty:* Replace the modulating valve. 18) Is the water flow servo normal? (2008/2408) ag. # Disconnect connector and measure the red ~ blue resistance on the water flow servo side. *Normal:* 10 ~ 30Ω If normal, go to (ah). Faulty: Replace the water flow servo with water flow sensor. ah. Disconnect connector, and measure the voltage between orange (+) and grey(-) on the water flow control side. Normal: DC 11 ~ 13 V If normal, go to (ai). Faulty: Replace the PCB unit. ai. With connector (E_1) connected (do Connector (E₁) not turn water ON... wait for the water flow servo to return to fully open), measure the voltage between brown and grey. Normal: DC 4 ~ 6V Faulty: Change water flow servo with sensor. aj. Leaving the relay connector (E1) connected (do not turn water ON... wait for the water flow servo to return to fully open), measure the voltage between yellow and grey. Normal: Less than DC 0.5 V Faulty: Change water flow servo with sensor.

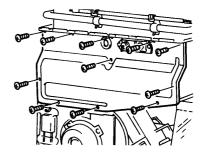
20. Electrical Component Analysis

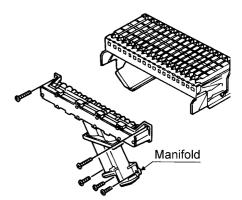
Before starting inspection, re-check wiring harnesses and double check that all connections are tight. Before carrying out checks marked with*, remove power cord from wall plug.

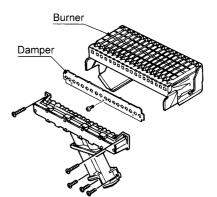
Nature of Fault	Examination Point	Diagnostic Point	Values	Y/ N	Action	Repa ir N ^o
A. The ON indicator	1. Is the power cord	Inspect visually	Is it plugged in?	Yes	Go to A - 2.	
does not light up after switching the unit on.	plugged in?			No	Plug in cord	1
Switching the unit on.	2. Is supply voltage	Measure voltage at power	(NZ 230 V)	Yes	Go to A - 3.	
	correct?	point.		No	Check power supply circuit. Check fuses.	2
	3. Check 3 Amp electri-	*Inspect visually	Is the surge protec-	Yes	Go to A - 5	
	cal fuses.		tor indicator lit up	No	Go to A - 6	
	4. Check 3 Amp electri- cal fuses.	* Disconnect and measure resistance to confirm if fuse is	Is fuse blown?	Yes	Go to A - 5 and replace fuse.	
		blown. Normal< 1 M Ω		No	Go to A - 6.	
	5. Check for short cir-	i) Measure the resistance of	Are values within	Yes	Go to A - 6 - 2)	
	* Remove connector I from the PCB before measur- ing. Pink - Black	those specified at left? N.B. Measure after checking that there are no broken wires or shorts.	No	Replace faulty solenoid valves.		
		 ii) Measure the sparker resistance. * Disconnect the sparker connector I₄ and measure the resistance between both terminals. 		Yes	Go to A - 5-iii)	
				No	Replace sparker	4
		iii) Check wiring	Are there any shorts?	Yes	Rectify/Replace	5
				No	Replace PCB	6
	6. Check 240V-100V transformer.	i) Measure voltage between red-red A ₁ connector.	AC 90~110 V	Yes	Go to A - 6 - ii)	
				No	Replace PCB.	
		ii) Measure voltage at con-	Are values within	Yes	Go to A - 7.	
		nectors A, F with appliance on "standby". A, Green-Green AC16 ~ 20 V F, Orange-Orange AC13 ~ 30 V F, Brown-Grey AC30 ~ 50 V F, Yellow (LH)-Grey AC180 ~ 220 V	those specified at left?	No	Replace 240V trans- former.	8
	7. Check the remote control (where con- nected).	Measure voltage between the control terminals at H ₁ .	DC10 ~ 13 V.	Yes	Check cable for shorts/ broken wires; replace remote control.	9
				No	Replace PCB.	10

Nature of Fault	Examination Point	Diagnostic Point	Values	Y/ N	Action	Repa ir N ^o
B. Digital monitor	1. Check water flow	i) Measure voltage between	DC11 ~ 13 V.	Yes	Go to B - 1 - ii)	
lights up, but combus- tion does not com-	sensor.	red-black at connector C_2		No	Replace PCB	11
mence. (When		ii) Measure voltage between	DC2 ~ 10 V	Yes	Go to B - 4 - ii).	
remotes are con- nected)		yellow-black at connector C ₂		No	Replace water flow sensor.	12
Error code "72" dis-	2. Check flame rod.	* Measure resistance	Resistance > $1M\Omega$	Yes	Replace PCB.	13
played on digital moni- tor		between flame rod terminal A ₂ and earth.		No	Replace flame rod.	14
Error code "32" dis- played	3. Check outgoing water temperature	* Disconnect connector C ₁ and measure resistance of	Are values as shown at left?	Yes	Replace water temp. thermistor.	15
	thermistor.	resistance Open circuit:>1ΜΩ Short circuit: <1Ω		No	Go to B - 4.	
Error code "61" dis-	4. Check combustion	i) Check motor.	DC6 ~ 40 V	Yes	Go to B - 4 - ii).	
played on digital moni- tor	fan.	Measure voltage between black-red at connector D ₁ .	(Fan ON) DC 0 V (Fan OFF)	No	Replace PCB.	16
		ii) Check rotation sensor. Measure voltage between black-yellow at connector D ₁ .	DC11 ~ 13V	Yes	Go to B - 4 - iii).	
				No	Replace combustion fan.	18
		iii) Measure voltage between black-white of connector D_1 .	DC2 ~ 9V.	Yes	Go to B - 5.	
				No	Replace PCB	19
Error code "11" dis-	5. Check sparker.	i) Measure voltage btwn grey- grey at connector I ₄ (sparker ON)	AC90~110 V.	Yes	Go to B - 5 - ii).	
played on digital moni- tor				No	Replace PCB.	20
		ii) * Remove connector I ₄ ;	Is resistance >	Yes	Go to B - 5 - iii).	
		measure resistance btwn sparker terminals.	1M Ω	No	Replace sparker.	21
		iii) Check if unit is sparking.	Is the sparker spark- ing?	Yes	Go to B - 6.	
				No	Adjust/replace elec- trode.	22
	6. Check main gas solenoid valve (SV ₁).	i) * Disconnect main sld con- nector I from PCB. Measure resistance btwn pink-blk.	0.9 ~ 1.3kΩ	Yes	Go to B - 6 - ii).	
				No	Replace main solenoid (SV ₁).	23
		ii) Measure voltage between pink-black of SV ₁ connector.	DC80~100V	Yes	Go to B - 7.	
				No	Replace PCB.	24
	7. Check solenoid	i) * Disconnect connector I from PCB; measure resist- ance between yellow-black.	1.3 ~ 1.9k Ω	Yes	Go to B - 7 - ii).	
	valve (SV ₂).			No	Replace (SV ₂).	25
		ii) Measure voltage between	DC80~100V	Yes	Go to B - 8.	
		yellow-black of SV ₂ connec- tor.		No	Replace PCB.	26
Error code "11"	8. Check change	i) * Disconnect connec-	1.3~1.9kS	Yes	Go to B - 8 - ii).	
displayed on dig- ital monitor	over solenoid valve (SV ₃).	tor I from PCB; measure resistance between blue-black.		No	Replace (SV ₃).	27
		ii) Measure the voltage between blue-black of SV_3 connector.	DC80~100V	Yes	Go to B - 9.	
				No	Replace PCB.	28


Nature of Fault	Examination Point	Diagnostic Point	Values	Y/ N	Action	Repa ir N ^o
Error code "14" dis-	9. Check thermal fuse.	* Disconnect connector B ₂ ;	Resistance value <	Yes	Go to B - 10.	
played		measure resistance between red-red.	1Ω	No	Replace thermal fuse.	29
	10. Check overheat	* Disconnect OHS (remaining	Is Resistance	Yes	Go to B - 10.	30
	switch (remaining flame) switch (bi-metal)	flame) sw. (Bi-metal sw.) fes- toon terminals; measure resistance btwn terminals.	<1Ω	No	Replace remaining flame safety device (bi- metal SW).	31
C. Combustion occurs	1. Check flame rod.	i) Measure voltage btwn	AC100~160V	Yes	Go to C - 1 - ii).	
but flame fails.		flame rod terminal A ₂ and appliance earth		No	Replace PCB.	32
Error code "12" dis- played		ii) Check flame bracket is not	Is it secure?	Yes	Go to C - 1 - 2.	
F - J		loose.		No	Replace/Rectify.	33
	2. Check earth lead.	Check for faulty earth con- nections (to round terminals)	Are connections OK?	Yes	Check other causes for flame failure.	34
		for broken wires or short cir- cuits		No	Adjust/replace earth lead.	36
D. Can not adjust	1. Check water temper- ature thermistor.	Disconnect connector C _{2;} measure resistance between white-white. See page 24, for temp. at various resistance.	Resistance values match table on page 24?	Yes	Go to D - 2.	
water temperature.				No	Replace water temper- ature thermistor.	36
	2. Check changeover solenoid valve (SV ₃)	i) * Disconnect sld connector I from PCB; measure resist- ance between blue-black.	1.3~1.9k Ω .	Yes	Go to D - 2 - ii).	
				No	Replace (SV ₃).	37
		ii) Measure voltage between blue-black wire of change over (SV_3) at connector I ₃ .	DC80~100V	Yes	Go to D - 3.	
				No	Replace PCB.	39
	3. Check modulating valve.	i) * Disconnect modulating	60 ~ 100 Ω	Yes	Go to D - 3 - ii).	
		valve festoon terminal; measure resistance solenoid terminals.		No	Replace modulating valve	39
		 ii) Measure the voltage between the two harness ter- minals (still disconnected) iii) Check whether the sec- ondary gas pressure alters when remote control temper- ature alters 37~75° C. 	DC0.5~25V Does secondary volt- age change?	Yes	Go to D - 3 - iii).	
				No	Replace PCB.	40
				Yes	Go to D - 4.	
				No	Replace modulating valve.	41
D. Can not adjust	4. Check water flow servo.	i) Measure resistance	10~30 Ω	Yes	Go to D - 4 - ii).	
water temperature.		between red-blue water flow servo connector I_1 .		No	Replace water flow servo with sensor.	42
		ii) Measure voltage between	DC11~13V	Yes	Go to D - 4 - iii).	
		orange (+) - grey (-) water flow servo connector I ₁ .		No	Replace PCB.	43
		iii) Measure voltage between brown-grey water flow servo connector I ₁ (don't turn water ON).	DC4 ~ 6V	Yes	Go to D - 4 - iv).	
				No	Replace water flow servo with sensor.	44
		iv) Measure voltage between yellow-grey water flow servo connector I ₁ (don't turn water ON).	Is voltage < DC 0.5V	Yes	Normal	
	yellow			No	Replace water flow servo with sensor.	45


Nature of Fault	Examination Point	Diagnostic Point	Values	Y/ N	Action	Repa ir N ^o
E. Anti-frost heater does not work.	1. Check anti-frost heater.	i) * Disconnect connector J ₃ ; measure resistance between blue-blue (water valve)	950~1050 Ω	Yes	Go to E - 1 - ii).	
				No	Replace anti-frost heater (assy).	46
	J ₃ ; measure resistan	ii) * Disconnect connectors	135~170Ω <u>Yes</u> No	Yes	Go to E - 2.	
		between blue-blue. (heat		No	Replace anti-frost B (assy).	47
	2. Check frost sensing	best sensing Disconnect connector f_3 ; measure the resistance between blue-blue. Atmos- pheric temperature less than 4 ± 3 ° C.	Is resistance < 1 Ω	Yes	Check wiring.	
	switch.			No	Replace frost sensing switch.	48


21. Gas Conversion



- 1. Remove outer cover, 4 screws.
- 2. Delete "gas type marking" from the combustion chamber cover and replace with "new gas type".
- (Use a black marking pen).
- 3. Delete gas type from small paper sticker on bottom edge of inner casing.
- 4. Replace small gas label on gas inlet.
- 5. Replace large gas label on top of appliance.
- 6. Place "new" very small gas label (indicating new gas type) over existing one on data plate.
- 7. Complete details on conversion sticker, place sticker on the inside front cover.
- 8. Remove PCB protective plastic cover.
- 9. Disconnect flame sensor and sparker lead.
- 10. Remove combustion chamber cover, 11 screws.
- 11. Remove manifold, 5 screws.
- 12.Fit or remove damper assembly (3 screws) depending on gas type. Note: Damper is only used on LPG models.
- 13. Fit new manifold, ensuring no wires are trapped. Check "O" rings are correctly positioned.
- 14.Refit combustion chamber cover. Attach flame sensor and sparker lead.
- 15.Connect appliance to gas, water, and electricity.
- 16. Follow gas pressure setting procedure, (see next page).
- 17. Check for gas escapes with soapy water.
- 18.Disconnect appliance from services (if in workshop).
- 19.Replace front cover, star washer must be on bottom right hand screw.

22. Gas Pressure Setting Procedure

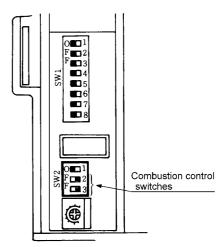
Position gas selection switches to the correct position. (see diagram opposite).

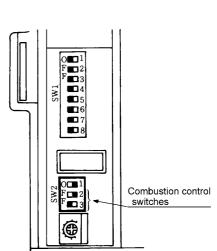
Remove pressure point screw and attach pressure gauge.

Turn water ON.

Adjust pressure

1) Low


- a. Position No. 2 of the bottom set of dip switches to ON.
- b. Remove the plug in the base of the appliance for access to the regulator screw (modulating valve).


Unlock screw and adjust to:

- Natural 0.8 kPa
- Propane 0.17 kPa
- LPG (NZ) 0.15 kPa
 - c. Lock regulator screw (modulating valve).

2) High

- d. Position No. 3 of the bottom set of dip switches to the ON position (leaving No.2 ON).
- e. The HI potentiometer on the PCB, adjust the pressure to: Natural - 0.90 kPa Propane - 2.26 kPa LPG (NZ) 1.90 kPa
- f. Position switch No.2 and No.3 of the bottom set of dip switches to the "OFF" position.
- g. Turn water OFF. Replace plug in base.
- h. Replace protective plastic cover over PCB.

OFF

NG

OFF

Propane

LPG

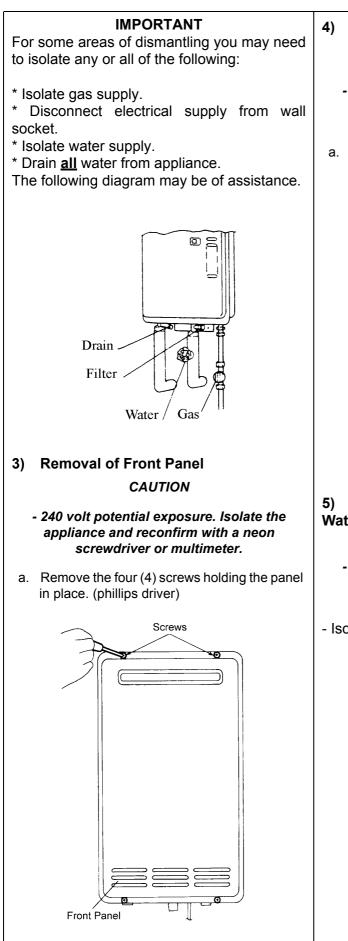
- 40 -

23. Dismantling for service

NOTE: Before proceeding with dismantling, be sure to follow the **CAUTION** instructions before each explanation.

e.g. - Isolate gas supply.

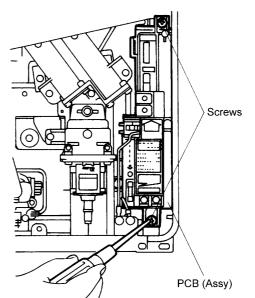
- Disconnect electrical supply from wall socket.


- Isolate the water supply.
- Drain All water from the appliance

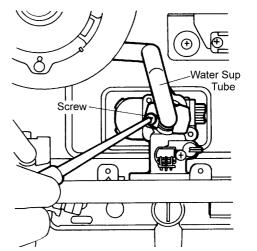
ltem

Page

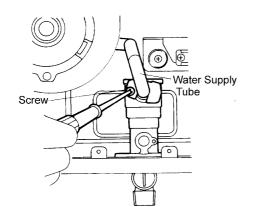
1. Removal of Front Panel	. 42
2. Removal of PCB	.42
3. Removal of Water Flow Sensor with Water Flow Servo	.42
4. Removal of Sparker	.43
5. Removal of Combustion Fan	.43
6. Removal of Water Temperature Thermistor	.43
7. Removal of Transformer	.44
8. Removal of Manifold and Burner	.44
9. Removal of Gas Control	.45
10.Removal of Heat Exchanger	.45
11.Removal of Thermal Fuse	.46


Unless otherwise stated, reassembly is the reverse of dismantling

Removal of PCB


CAUTION

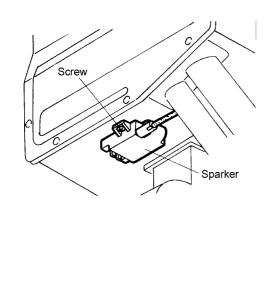
- 240 volt potential exposure. Isolate the appliance and reconfirm with a neon screwdriver or multimeter.
- a. Remove the 2 screws on the P.C.B. and pull out towards you. (phillips driver)


5) Removal of Water Flow Sensor with Water Flow Servo *CAUTION*

- 240 volt potential exposure. Isolate the appliance and reconfirm with a neon screwdriver or multimeter.
- Isolate Water Supply.
 - b. Remove one (1) screw from the heat exchanger water supply pipe to release the metal lock. Pull the pipe towards yourself to release. Handle O-ring carefully. (phillips driver)

c. Remove four (4) screws from the water supply connection and remove connection.

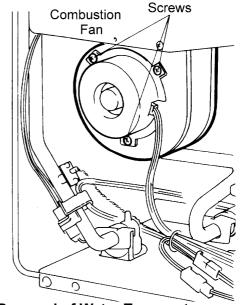
Handle O-ring carefully. (phillips driver)



d. Disconnect electrical connectors and remove water flow sensor from control assembly.

6) Removal of Sparker

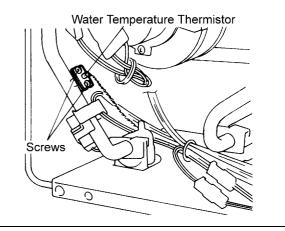
CAUTION

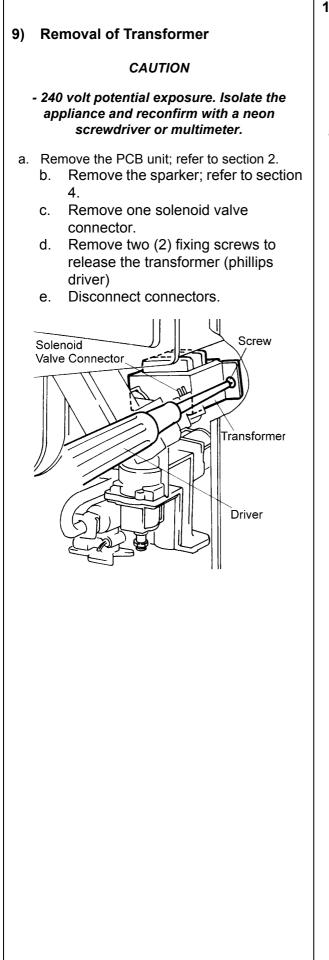

- 240 volt potential exposure. Isolate the appliance and reconfirm with a neon screwdriver or multimeter.
- Remove one (1) screw that secures sparker to the attachment plate to remove sparker. (phillips driver).
 - b. Disconnect high tension lead connector.

7) Removal of Combustion Fan CAUTION

- 240 volt potential exposure. Isolate the appliance and reconfirm with a neon screwdriver or multimeter.
- a. Detach the sparker, refer to section 4.
 - b. Remove the three (3) screws that secure the fan in place, disconnect connector and pull the fan towards yourself to remove it.

(phillips driver).

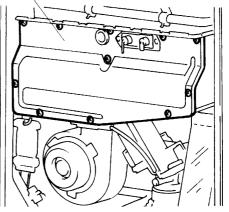

8) Removal of Water Temperature Thermistor


CAUTION

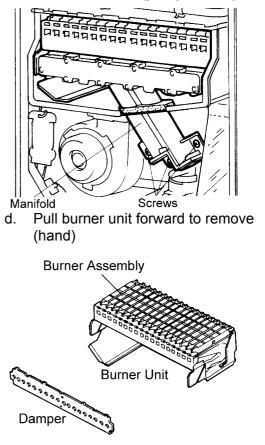
- 240 volt potential exposure. Isolate the appliance and reconfirm with a neon screwdriver or multimeter.

- Isolate Water Supply.

a. Remove the two (2) screws that secure the thermistor in place to remove the water temperature thermistor. (phillips driver).



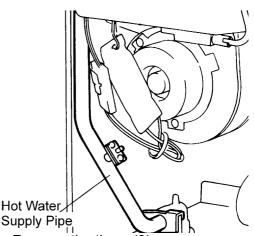
10) Removal of Manifold and Burner


CAUTION

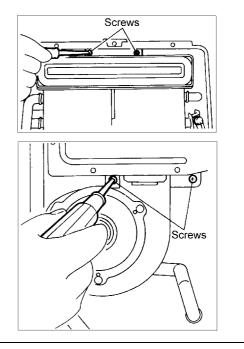
- 240 volt potential exposure. Isolate the appliance and reconfirm with a neon screwdriver or multimeter.
- a. Remove the sparker, refer section 4.(1 screw)
 - b. Remove eleven (11) screws that hold the combustion chamber front panel in place and remove the panel (phillips driver)

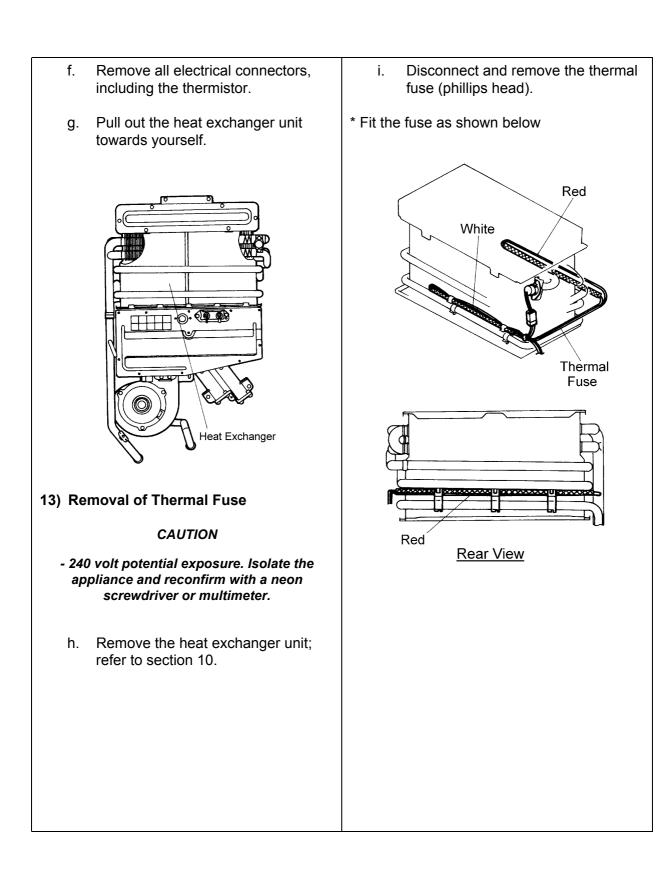
Combustion Chamber Front Panel

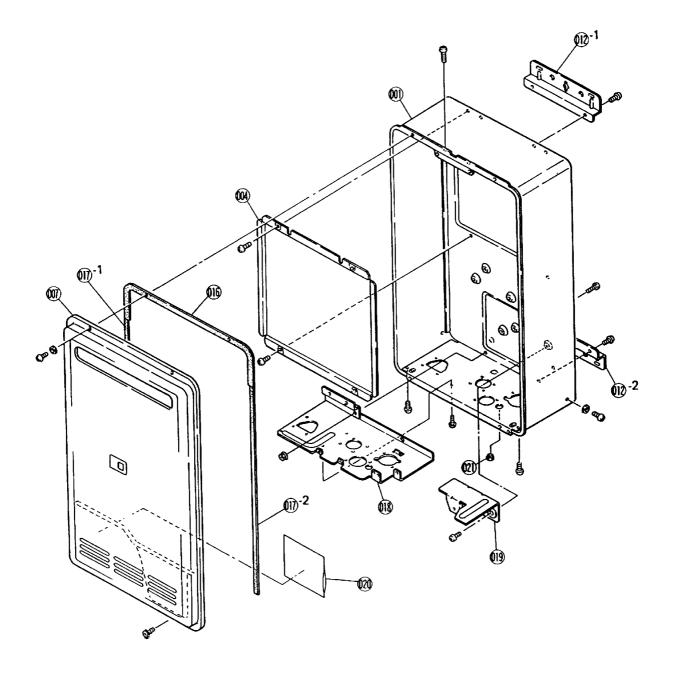
c. Remove the five (5) screws that secure the manifold in place and pull out the manifold (phillips driver).

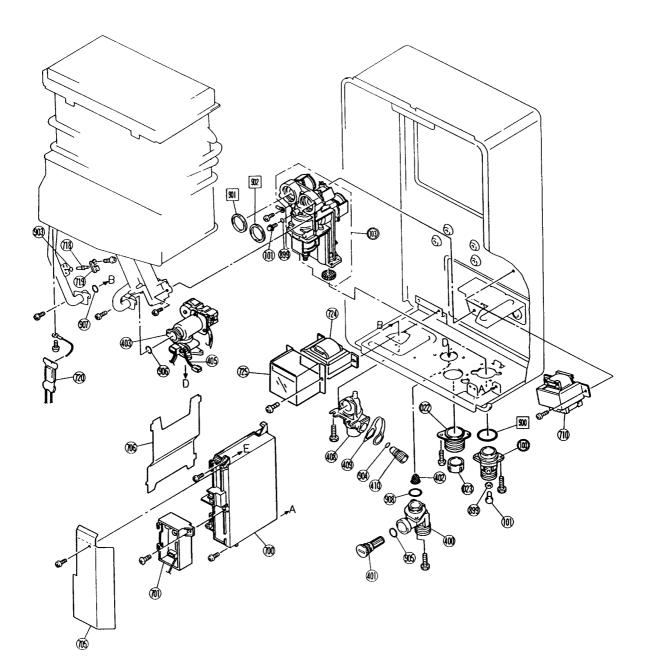

11) Removal of Gas Control CAUTION - 240 volt potential exposure. Isolate the appliance and reconfirm with a neon screwdriver or multimeter. a. Remove the manifold (5 screws), refer section 8a,b,c. b. Remove the four (4) screws that hold the gas connection and gas control in place. Remove the gas connection. Handle O-ring carefully. (phillips driver) Screws Gas Inlet Remove one (1) screw that holds the C. gas control in place, disconnect connectors, pull out the gas control. Screw С Gas Control

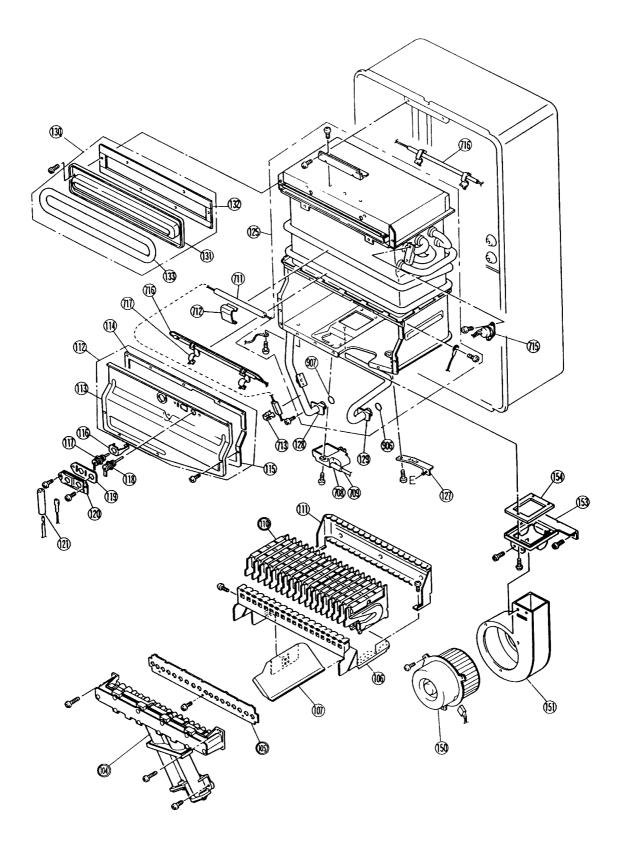
12) Removal of Heat Exchanger

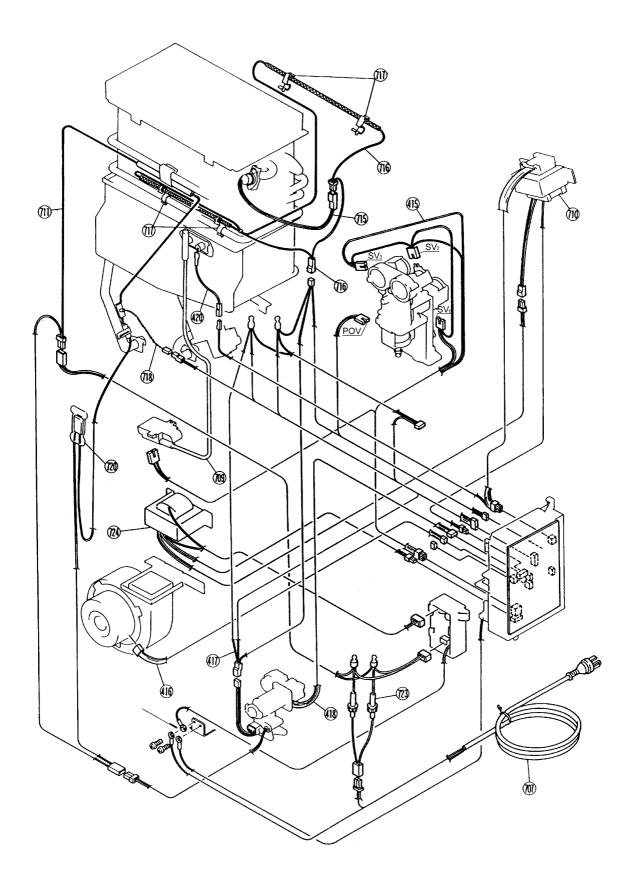

CAUTION


- 240 volt potential exposure. Isolate the appliance and reconfirm with a neon screwdriver or multimeter.


- Isolate Water Supply.
- Drain All Water
- a. Remove PCB unit; refer to section 2-a.
 - b. Remove the heat exchanger water. connection pipe; refer to section 3-a.
 - c. Remove one (1) screw from the outlet connection clip, to pull out the hot water supply connection pipe towards yourself. (Handle O-ring carefully)




- d. Remove the three (3) screws securing the manifold to the gas control.
- e. Remove four (4) screws that secure the heat exchanger unit in place.



21. Parts List

No.	Part Name	RJ Drawing No	RA Part No	Qty
001	BODY Assy, Main - Standard	DU195-100	92088616	1
001	BODY Assy, Main - Salt Resistant			1
004	SHIELD, Heat Insulation	BU155-110	92073329	1
007	PANEL Assy, Front - Standard	CU195-165-6-4	92088582	1
012	BRACKET, Wall Mounting	BU195-121		2
016	SEAL PACKING, Panel	BU195-167	92086909	1
017	GASKET - Side, Main Body	AU115-163	92063361	2
018	PANEL, Connection Reinforcement	BU169-1511		1
019	GASKET, Gas Control	BU169-125		1
021	GASKET, Blind	AU105-113		
)22	PLUG, Rubber	BU56-602-N	92073352	1
023	SKIRT, Cable	AU169-126	02010002	1
100	CONNECTION, Gas R3/4	CU195-211	92081587	1
101	SCREW, Test Point	C10D-5	52001307	2
103	CONTROL Assy, Gas	C36E-16	92081595	1
		CU195-200-G	92074977	1
104	MANIFOLD Assy - 1.70 NG			1
104	MANIFOLD Assy - NG	CU195-200-G	92074970	1
105	DAMPER, Prop.G/LPG	BU195-258	92071364	
106	BURNER CASE, Front	DU195-255		1
107	PANEL, Sound Insulation	CU169-257	00070454	1
110	BURNER, Front	B3A1-4	92073451	1
111	BACK PANEL, Burner Case	CU169-256		1
112	FRONT PANEL, Comp.Assy, Comb.Chamber	DU195-311		1
114	GASKET, Comb. Chamber - Top	BU195-315	92081629	1
115	GASKET, Comb. Chamber - Bottom	BU195-316	92081637	1
116	TARGET, Ignition	AU168-325	92073469	1
117	ELECTRODE	AU168-321	92072917	1
118	ELECTRODE, Flame Rod Electrode	AU168-322	92072891	1
119	GASKET, Electrode	AU168-312	92095629	1
120	CLIP, Electrode retainer	AH43-262		1
121	SLEEVE, Electrode	AU102-681	90164856	1
125	HEAT EXCHANGER, Comp.Assy	DU195-906	92081660	1
127	BRACKET, PCB	AU195-330		1
128	O-RING, Heat Exchanger Outlet	AU195-321		1
129	O-RING, Heat Exchanger Inlet	AU195-322		1
130	FLUE Assy	BU169-470	92081678	1
131	TERMINAL, Flue	BU169-471	02001010	1
132	GASKET, Flue Front Terminal	BU169-472	92073485	1
133	PACKING, Flue Front Panel Seal	AU155-111	92073493	1
150	MOTOR Assy, Fan	BU195-565	92081686	1
150	CASING, Fan	BU169-552	92073519	1
153	CONNECTION, Fan	BU169-555	92073527	1
153	GASKET, Fan Connection			1
		AU169-556	92073535	
100	CONNECTION-B, R3/4 Water Inlet	H73-501	92089044	<u>1</u> 1
102	FILTER, Water Flow Valve	M8D1-11	92072701	
103	SERVO Assy, Water Flow Sensing	M8E-4-3	92085406	1
103	HEATER, Water Valve	BU195-1635	92082437	1
108	RETAINER, Pressure Relief Valve Plug	BU132-362	92081744	1
109	PLUG, Rubber	AU129-526		1
110	VALVE, Pressure Relief	BU129-520-C	92081751	1
115	HARNESS - Wire, Modulating Solenoid Valve	BU129-520	92081769	1
116	HARNESS - Wire, Fan Motor	BU195-602		1
117	HARNESS - Wire, Sensor	BU195-603	92081777	18
118	HARNESS - Wire, Water Flow Servo	BU195-604	92081785	1
120	HARNESS - Wire, Flame Rod	AU195-605		1

No.	Part Name	RJ Drawing No	RA Part No	Qty
700	PCB Assy	CU195-1633	92088624	1
701	ARRESTOR, Surge	BU195-1643	92081801	1
705	COVER, PCB Front	BU168-707		1
706	COVER, Control	BU195-507		
707	POWER CORD	CP90491T	92089051	1
708	SPARKER	E1-144	92072776	1
709	LEAD HT	BH38-710	92063585	1
710	TRANSFORMER, Assy	ET150-1	92081835	1
711	HEATER-B Assy, Anti Frost (AK only)	BU195-1637	92081843	1
712	BRACKET, Heater (AK only)	AU195-675	92086123	1
713	BRACKET, Heater (AK only)	AU100-721	92076123	1
715	SWITCH, Overheat	BU129-821	92081850	1
716	FUSE, Thermal	CU195-610	92081868	1
717	HARNESS, Thermal Fuse	CP80531		1
718	THERMISTOR	BH45-650	92073675	1
719	CLIP-LARGE, Thermistor Retainer	CP90172	92086388	1
723	HARNESS - Wire, 3 Amp Fuse Harness	BU195-163		1
724	TRANSFORMER, Assy (240-100V)	ET160A-1	92081918	1
725	COVER, Transformer	BU168-1533		1
801	SCREW, FT	ZBA0410UK		1
802	SCREW	ZB10510UK		
803	SCREW, Tapping	ZFAB0408SZ		1
804	SCREW, FT	ZBA0408UK		1
805	SCREW, Truss Tapping	ZBD0408UK		1
806	SCREW	ZAD0408UK	92087535	1
807	SCREW	CP-21478-412		1
808	SCREW. Tapping	ZAA0408UK		1
809	SCREW	ZAA0408UK		1
810	SCREW, Truss FT	ZBA0412UK		1
811	SCREW, FT	ZQAA0512UK		1
812	SCREW, Truss FT	ZBA0512UK		1
816	SCREW	ZEDB0408SZ		3
818	SCREW	ZHDC0408TK		1
819	SCREW, Tapping	ZEAB0406UK		1
820	SCREW, FT	ZIAA0408SZ		1
821	SCREW, Hexagon Head	ZAG0514UK		1
822	WASHER, Nylon	CF83-41430		1
823	CLIP, Electrode	CP-90331		1
899	O-RING	12A03	90195165	2
900	O-RING	OR1AP24NP	92081926	1
901	MANIFOLD O-Ring Gas	C36F8-1	92075126	1
903	O-RING	M10B-2-4		1
904	O-RING	M10B-2-7	92043231	1
905	O-RING	M10B-2-12	92063551	1
906	O-RING	M10B-2-12.5	92071422	1
907	O-RING	M10B-2-14	92062207	1
908	O-RING	M10B-2-18	92071182	1

Notes

SERVICE CONTACT POINTS

Rinnai ACN 005 138 769 ABN 74 005 138 769 AUSTRALIA PTY. LTD Internet: www.rinnai.com.au E-mail: enquiry@rinnai.com.au Head Office, Australia 10-11 Walker Street, Braeside, VIC 3195 Tel: (03) 9271 6625 Fax: (03) 9271 6622 **State Offices** 62 Elizabeth Street, Wetherill Park NSW 2164 New South Wales Western Australia 18 Belgravia Street, Belmont, WA 6104 **Product Sales** Victoria / South Australia / Northern Territory / Tasmania Tel: 1300 366 388 Fax: (03) 9271 6611 New South Wales Tel: (02) 9609 2888 Fax: (02) 9609 5260 Queensland Tel: (07) 3209 4622 Fax (07) 3209 4722 Tel: (08) 9479 9479 Fax: (08) 9277 2531 Western Australia **Spare Parts** Tel: 1300 366 388 Fax: (03) 9271 6611 National HelpLine National Tel: 1300 366 388 Fax: (03) 9271 6611 **Product Service**

Victoria / South Australia / Northern Territory / Tasmania New South Wales Queensland Western Australia

Emergency Hot Water

Victoria New South Wales South Australia Western Australia Queensland

Rinnai NEW ZEALAND LTD

Head Office, New Zealand

1800 632 386 (02) 9729 0468 (08) 8345 5185 (08) 9324 4145 1800 255 655

691 Mt. Albert Road, Royal Oak, Auckland P O Box 24-068

Tel: (09) 625 4285 Fax: (09) 624 3018

24 hr Service Tel: 0800 746624 (0800 Rinnai)

E-mail: sales@rinnai.co.nz

Internet: www.rinnai.co.nz

Tel: 1300 366 388 Fax: (03) 9271 6611 Tel: (02) 9609 2600 Fax: (02) 9729 0467 Tel: 1300 363 123 Fax: (07) 3209 4722 Tel: (08) 9479 9479 Fax: (08) 9277 2531

INFINITY REU-2425W SM 2004